Variational Principle of Extremum in Electromechanical Systems
Solomon I. Khmelnik
Variational Principle of Extremum in Electromechanical Systems
Solomon I. Khmelnik
The variational principle of extremum is stated and proved for electromechanical systems of arbitrary configuration wherein the electromagnetic, mechanical, thermal hydraulic and other processes are going on. It is shown that for such systems there exists a pair of functionals with a global saddle point. For systems without electric circuits the suggested principle is equivalent to the minimum action principle. The principle is generalized for the systems described by partial differential equations, and in particular by Maxwell equations. A speedy universal algorithm for computation of such systems with arbitrary excitations is described. In this algorithm a method of searching for global saddle point simultaneously on two functionals is realized. The book contains numerous examples, including those presented as M-functions of the MATLAB system.
This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.