Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

System-Level Design Techniques for Energy-Efficient Embedded Systems
Hardback

System-Level Design Techniques for Energy-Efficient Embedded Systems

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

By shrinking feature sizes, deep-submicron technology is enabling the design of systems with increased complexity on a single chip, but it is also introducing a productivity design gap. Additionally, system designers have to cope with an ever-increasing application complexity and shrinking time-to-market windows. Design re-use and system-level co-synthesis are two approaches that are being employed to bridge the design gap and to aid system designers. Power consumption has become one of the main barriers in embedded computing systems design and therefore, methodologies and techniques that provide power-aware hardware/software co-design are necessary. System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone. System-Level Design Techniques for Energy-Efficient Embedded Systems will be of interest to advanced undergraduates, graduate students, and designers, whom are interested in energy-efficient embedded systems design.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
31 December 2003
Pages
194
ISBN
9781402077500

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

By shrinking feature sizes, deep-submicron technology is enabling the design of systems with increased complexity on a single chip, but it is also introducing a productivity design gap. Additionally, system designers have to cope with an ever-increasing application complexity and shrinking time-to-market windows. Design re-use and system-level co-synthesis are two approaches that are being employed to bridge the design gap and to aid system designers. Power consumption has become one of the main barriers in embedded computing systems design and therefore, methodologies and techniques that provide power-aware hardware/software co-design are necessary. System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone. System-Level Design Techniques for Energy-Efficient Embedded Systems will be of interest to advanced undergraduates, graduate students, and designers, whom are interested in energy-efficient embedded systems design.

Read More
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
31 December 2003
Pages
194
ISBN
9781402077500