Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The International Technology Roadmap for Semiconductors (ITRS) projects that by 2011 over one billion transistors will be integrated into a single monolithic die. The wiring system of this billion-transistor die will deliver power to each transistor, provide a low-skew synchronizing clock to latches and dynamic circuits, and distribute data and control signals throughout the chip. The resulting design and modelling complexity of this GSI multilevel interconnect network is enormous such that over one hundred quadrillion coupling inductances and capacitances throughout a nine-to-ten-level metal stack must be managed. Interconnect Technology and Design for Gigascale Integration addresses the limits and opportunities for GSI interconnect design and technology in the 21st century. The text is the cumulative effort from academic researchers at Georgia Tech, MIT, and Stanford, as well as from industry researchers at IBM T.J. Watson Research Center, LSI Logic, and SUN microsystems. The material found in this book is unique in that it spans IC interconnect topics ranging from IBM’s revolutionary copper process to an in depth exploration into interconnect-aware computer architectures. This broad swath of topics presented by leaders in the research field is intended to provide a comprehensive perspective on interconnect technology and design issues so that the reader will understand the implications of the semiconductor industry’s next substantial milestone - gigascale integration.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The International Technology Roadmap for Semiconductors (ITRS) projects that by 2011 over one billion transistors will be integrated into a single monolithic die. The wiring system of this billion-transistor die will deliver power to each transistor, provide a low-skew synchronizing clock to latches and dynamic circuits, and distribute data and control signals throughout the chip. The resulting design and modelling complexity of this GSI multilevel interconnect network is enormous such that over one hundred quadrillion coupling inductances and capacitances throughout a nine-to-ten-level metal stack must be managed. Interconnect Technology and Design for Gigascale Integration addresses the limits and opportunities for GSI interconnect design and technology in the 21st century. The text is the cumulative effort from academic researchers at Georgia Tech, MIT, and Stanford, as well as from industry researchers at IBM T.J. Watson Research Center, LSI Logic, and SUN microsystems. The material found in this book is unique in that it spans IC interconnect topics ranging from IBM’s revolutionary copper process to an in depth exploration into interconnect-aware computer architectures. This broad swath of topics presented by leaders in the research field is intended to provide a comprehensive perspective on interconnect technology and design issues so that the reader will understand the implications of the semiconductor industry’s next substantial milestone - gigascale integration.