Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry
Hardback

Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

GU Chaohao The soliton theory is an important branch of nonlinear science. On one hand, it describes various kinds of stable motions appearing in - ture, such as solitary water wave, solitary signals in optical ?bre etc., and has many applications in science and technology (like optical signal communication). On the other hand, it gives many e?ective methods ofgetting explicit solutions of nonlinear partial di?erential equations. Therefore, it has attracted much attention from physicists as well as mathematicians. Nonlinearpartialdi?erentialequationsappearinmanyscienti?cpr- lems. Getting explicit solutions is usually a di?cult task. Only in c- tain special cases can the solutions be written down explicitly. However, for many soliton equations, people have found quite a few methods to get explicit solutions. The most famous ones are the inverse scattering method,B.. acklund transformation etc. The inverse scattering method is based on the spectral theory of ordinary di?erential equations. The Cauchyproblemofmanysolitonequationscanbetransformedtosolving a system of linear integral equations. Explicit solutions can be derived when the kernel of the integral equation is degenerate. The B.. ac .. klund transformation gives a new solution from a known solution by solving a system of completely integrable partial di?erential equations. Some complicated nonlinear superposition formula arise to substitute the superposition principlein linear science.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
8 December 2004
Pages
308
ISBN
9781402030871

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

GU Chaohao The soliton theory is an important branch of nonlinear science. On one hand, it describes various kinds of stable motions appearing in - ture, such as solitary water wave, solitary signals in optical ?bre etc., and has many applications in science and technology (like optical signal communication). On the other hand, it gives many e?ective methods ofgetting explicit solutions of nonlinear partial di?erential equations. Therefore, it has attracted much attention from physicists as well as mathematicians. Nonlinearpartialdi?erentialequationsappearinmanyscienti?cpr- lems. Getting explicit solutions is usually a di?cult task. Only in c- tain special cases can the solutions be written down explicitly. However, for many soliton equations, people have found quite a few methods to get explicit solutions. The most famous ones are the inverse scattering method,B.. acklund transformation etc. The inverse scattering method is based on the spectral theory of ordinary di?erential equations. The Cauchyproblemofmanysolitonequationscanbetransformedtosolving a system of linear integral equations. Explicit solutions can be derived when the kernel of the integral equation is degenerate. The B.. ac .. klund transformation gives a new solution from a known solution by solving a system of completely integrable partial di?erential equations. Some complicated nonlinear superposition formula arise to substitute the superposition principlein linear science.

Read More
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
8 December 2004
Pages
308
ISBN
9781402030871