Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The concept of electron correlation is fundamental to condensed matter physics, playing an important role in systems including high temperature superconductors, heavy fermions, manganite compounds with colossal magnetoresistance, transition metal compounds with metal-insulator transitions, and mesoscopic systems like quantum dots and carbon nanotubes. The dialogue between experimentalists and theoreticians presented here is an assessment of our understanding of the field; one that sets the agenda for future work.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The concept of electron correlation is fundamental to condensed matter physics, playing an important role in systems including high temperature superconductors, heavy fermions, manganite compounds with colossal magnetoresistance, transition metal compounds with metal-insulator transitions, and mesoscopic systems like quantum dots and carbon nanotubes. The dialogue between experimentalists and theoreticians presented here is an assessment of our understanding of the field; one that sets the agenda for future work.