Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

A Meshless Method Using Radial Basis Functions for Beam Bending Problems
Paperback

A Meshless Method Using Radial Basis Functions for Beam Bending Problems

$50.99
Sign in or become a Readings Member to add this title to your wishlist.

A meshless local Petrov-Galerkin (MLPG) method that uses radial basis functions (RBFs) as trial functions in the study of Euler-Bernoulli beam problems is presented. RBFs, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as they are in the conventional MLPG method. Compactly and noncompactly supported RBFs are considered. Noncompactly supported cubic RBFs are found to be preferable. Patch tests, mixed boundary value problems, and problems with complex loading conditions are considered. Results obtained from the radial basis MLPG method are either of comparable or better accuracy than those obtained when using the conventional MLPG method.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
31 July 2013
Pages
42
ISBN
9781289261320

A meshless local Petrov-Galerkin (MLPG) method that uses radial basis functions (RBFs) as trial functions in the study of Euler-Bernoulli beam problems is presented. RBFs, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as they are in the conventional MLPG method. Compactly and noncompactly supported RBFs are considered. Noncompactly supported cubic RBFs are found to be preferable. Patch tests, mixed boundary value problems, and problems with complex loading conditions are considered. Results obtained from the radial basis MLPG method are either of comparable or better accuracy than those obtained when using the conventional MLPG method.

Read More
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
31 July 2013
Pages
42
ISBN
9781289261320