Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Summary of Rocket-Model Tests at Zero Lift of the Northrop MX-775b Missile Configuration from Mach Numbers of 0.9 to 1.8
Paperback

Summary of Rocket-Model Tests at Zero Lift of the Northrop MX-775b Missile Configuration from Mach Numbers of 0.9 to 1.8

$51.99
Sign in or become a Readings Member to add this title to your wishlist.

Flight tests were conducted between Mach numbers of 0.9 and 1.8 over a Reynolds number range of 9(exp 6) to 30(exp 6) to determine the zero-lift drag and some rolling-effectiveness characteristics of the Northrop MX -775B missile with small and large body. The MX-775B is a proposed long range, supersonic, ground-to-ground missile having an arrow wing with 67.5 degree leading-edge sweep, 15 deg trailing-edge sweep, and a modified NACA 0004 airfoil section. The configuration has no horizontal tail but has wing trailing-edge elevons which serve a dual purpose as elevators and ailerons. The ratio of body frontal area to wing plan-form area is 0.0127 for the small-body configuration and 0.0330 for the large-body configuration. Five ¼-scale models were flown permitting determination of the drag coefficient for the basic small-body configuration, the incremental drag due to the large body, the incremental drag resulting from a blunt wing trailing edge, the wing-plus-interference drag, and some rolling-effectiveness data. Results indicated that the MX-775B has low supersonic zero-lift drag, the maximum zero-lift drag coefficients being respectively 0.0125 and 0.0155 at a Mach number of M = 1803 for the small- and large-body configurations. The effect of a blunt wing trailing edge, obtained by cutting off 10 percent of the wing chord, was to increase the zero-lift drag by 13 to 21 percent. Wing-plus-interference drag accounted for 78 percent of the total drag at M = 0.9 and 70 percent at M = 195 for the small-body configuration. The ailerons produced positive rolling effectiveness for the wing stiffness of the test models and the dynamic pressures of the test.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
22 July 2013
Pages
28
ISBN
9781289229016

Flight tests were conducted between Mach numbers of 0.9 and 1.8 over a Reynolds number range of 9(exp 6) to 30(exp 6) to determine the zero-lift drag and some rolling-effectiveness characteristics of the Northrop MX -775B missile with small and large body. The MX-775B is a proposed long range, supersonic, ground-to-ground missile having an arrow wing with 67.5 degree leading-edge sweep, 15 deg trailing-edge sweep, and a modified NACA 0004 airfoil section. The configuration has no horizontal tail but has wing trailing-edge elevons which serve a dual purpose as elevators and ailerons. The ratio of body frontal area to wing plan-form area is 0.0127 for the small-body configuration and 0.0330 for the large-body configuration. Five ¼-scale models were flown permitting determination of the drag coefficient for the basic small-body configuration, the incremental drag due to the large body, the incremental drag resulting from a blunt wing trailing edge, the wing-plus-interference drag, and some rolling-effectiveness data. Results indicated that the MX-775B has low supersonic zero-lift drag, the maximum zero-lift drag coefficients being respectively 0.0125 and 0.0155 at a Mach number of M = 1803 for the small- and large-body configurations. The effect of a blunt wing trailing edge, obtained by cutting off 10 percent of the wing chord, was to increase the zero-lift drag by 13 to 21 percent. Wing-plus-interference drag accounted for 78 percent of the total drag at M = 0.9 and 70 percent at M = 195 for the small-body configuration. The ailerons produced positive rolling effectiveness for the wing stiffness of the test models and the dynamic pressures of the test.

Read More
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
22 July 2013
Pages
28
ISBN
9781289229016