Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Geology and Mineral Deposits of the Minnie Moore and Bullion Mineralized Areas, Blaine County, Idaho
Paperback

Geology and Mineral Deposits of the Minnie Moore and Bullion Mineralized Areas, Blaine County, Idaho

$50.99
Sign in or become a Readings Member to add this title to your wishlist.

In the early 1880’s the discovery of rich ores in the Minnie Moore and Bullion mineralized areas sparked a rush to settle and develop the Wood River valley. Silver and lead discoveries in these areas spurred the boom in mining after completion of the Oregon Short Line Railroad to Hailey in 1883. In both areas the ore comprises galena, sphalerite, and tetrahedrite in a gangue of siderite, calcite, or quartz. Minor goldbearing quartz veins are also present. The ore is in fissure and replacement veins along fracture systems that formed in Late Cretaceous time, after intrusion of nearby granodiorite or quartz diorite stocks. The ore formed under mesothermal conditions and heat was supplied by the nearby plutons. In the Minnie Moore area, the mineralized veins are cut by low-angle normal faults that are of probable Eocene age. In the Minnie Moore mineralized area, the host rock is the middle part of the Devonian Milligen Formation, (the informal Lucky Coin limestone and Triumph argillite), which is the same stratigraphic level as the host ore in the rich Triumph mine northeast of Hailey. In the Bullion mineralized area, the ore is hosted by the lower member of the Middle Pennsylvanian to Lower Permian Dollarhide Formation. Rich ore was mined in several tunnels that reached the Mayflower vein, a northwest-striking mineralized shear zone. The deposits are thought to be mainly mesothermal veins that formed in association with Cretaceous magmatism. The syngenetic stratiform model of ore formation has often been applied to these deposits, however, no evidence of syngenetic mineralization was found in this study. Faulting has displaced most of the major orebodies and thus has made mining these deposits a challenge.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
8 March 2013
Pages
30
ISBN
9781288890064

In the early 1880’s the discovery of rich ores in the Minnie Moore and Bullion mineralized areas sparked a rush to settle and develop the Wood River valley. Silver and lead discoveries in these areas spurred the boom in mining after completion of the Oregon Short Line Railroad to Hailey in 1883. In both areas the ore comprises galena, sphalerite, and tetrahedrite in a gangue of siderite, calcite, or quartz. Minor goldbearing quartz veins are also present. The ore is in fissure and replacement veins along fracture systems that formed in Late Cretaceous time, after intrusion of nearby granodiorite or quartz diorite stocks. The ore formed under mesothermal conditions and heat was supplied by the nearby plutons. In the Minnie Moore area, the mineralized veins are cut by low-angle normal faults that are of probable Eocene age. In the Minnie Moore mineralized area, the host rock is the middle part of the Devonian Milligen Formation, (the informal Lucky Coin limestone and Triumph argillite), which is the same stratigraphic level as the host ore in the rich Triumph mine northeast of Hailey. In the Bullion mineralized area, the ore is hosted by the lower member of the Middle Pennsylvanian to Lower Permian Dollarhide Formation. Rich ore was mined in several tunnels that reached the Mayflower vein, a northwest-striking mineralized shear zone. The deposits are thought to be mainly mesothermal veins that formed in association with Cretaceous magmatism. The syngenetic stratiform model of ore formation has often been applied to these deposits, however, no evidence of syngenetic mineralization was found in this study. Faulting has displaced most of the major orebodies and thus has made mining these deposits a challenge.

Read More
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
8 March 2013
Pages
30
ISBN
9781288890064