Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation
Paperback

Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Biblioscholar
Country
United States
Date
6 December 2012
Pages
374
ISBN
9781288409839

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy.

Read More
Format
Paperback
Publisher
Biblioscholar
Country
United States
Date
6 December 2012
Pages
374
ISBN
9781288409839