Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

An Analytical Model of Nanometer Scale Viscoelastic Properties of Polymer Surfaces Measured Using an Atomic Force Microscope
Paperback

An Analytical Model of Nanometer Scale Viscoelastic Properties of Polymer Surfaces Measured Using an Atomic Force Microscope

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The United States Air Force and the Department of Defense is increasingly interested in nanomaterials. To study these materials, one needs to measure the mechanics of materials on the nanoscale. Over the past few decades the atomic force microscope (AFM) has been used in various methods to establish local surface properties at the nanoscale. In particular, surface elasticity measurements are crucial to understanding nanoscale surface properties. Problems arise, however, when measuring soft surfaces such as polymers and biological specimens, because these materials have a more complex viscoelastic response. This research focuses on modeling an AFM dynamic nanoindentation experiment intended to characterize near-surface viscoelastic material parameters. The experiment uses an AFM in dynamic contact mode with a polymer surface to gather frequency dependent amplitude and phase data. A three-dimensional, dynamic viscoelastic model of the AFM and surface interaction is developed and then analytically solved in the linear approximation under appropriate physical assumptions based on the physics of the AFM experimental setup. As an illustrative application, the analytical solution is coupled with experimental data from a polystyrene material to ascertain surface material properties at the nanoscale. Our solution allows the direct calculation of the storage and loss modulus from experimental data.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Biblioscholar
Date
1 December 2012
Pages
132
ISBN
9781288409709

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The United States Air Force and the Department of Defense is increasingly interested in nanomaterials. To study these materials, one needs to measure the mechanics of materials on the nanoscale. Over the past few decades the atomic force microscope (AFM) has been used in various methods to establish local surface properties at the nanoscale. In particular, surface elasticity measurements are crucial to understanding nanoscale surface properties. Problems arise, however, when measuring soft surfaces such as polymers and biological specimens, because these materials have a more complex viscoelastic response. This research focuses on modeling an AFM dynamic nanoindentation experiment intended to characterize near-surface viscoelastic material parameters. The experiment uses an AFM in dynamic contact mode with a polymer surface to gather frequency dependent amplitude and phase data. A three-dimensional, dynamic viscoelastic model of the AFM and surface interaction is developed and then analytically solved in the linear approximation under appropriate physical assumptions based on the physics of the AFM experimental setup. As an illustrative application, the analytical solution is coupled with experimental data from a polystyrene material to ascertain surface material properties at the nanoscale. Our solution allows the direct calculation of the storage and loss modulus from experimental data.

Read More
Format
Paperback
Publisher
Biblioscholar
Date
1 December 2012
Pages
132
ISBN
9781288409709