On the Use of Surrogate Functions for Mixed Variable Optimization of Simulated Systems
John E Dunlap
On the Use of Surrogate Functions for Mixed Variable Optimization of Simulated Systems
John E Dunlap
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This research considers the efficient numerical solution of linearly constrained mixed variable programming (MVP) problems, inwhich the objective function is a black-box stochastic simulation, function evaluations may be computationally expensive, andderivative information is typically not available. MVP problems are those with a mixture of continuous, integer, and categoricalvariables, the latter of which may take on values only from a predefined list and may even be non-numeric. Mixed VariableGeneralized Pattern Search with Ranking and Selection (MGPS-RS) is the only existing, provably convergent algorithm that can beapplied to this class of problems. Present in this algorithm is an optional framework for constructing and managing less expensivesurrogate functions as a means to reduce the number of true function evaluations that are required to find approximate solutions.In this research, the NOMADm software package, an implementation of pattern search for deterministic MVP problems, is modifiedto incorporate a sequential selection with memory (SSM) ranking and selection procedure for handling stochastic problems. In doingso, the underlying algorithm is modified to make the application of surrogates more efficient. A second class of surrogates based onthe Nadaraya-Watson kernel regression estimator is also added to the software. Preliminary computational testing of the modifiedsoftware is performed to characterize the relative efficiency of selected surrogate functions for mixed variable optimization insimulated systems.
This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.