Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Combat Identification Using Multiple Tuav Swarm
Paperback

Combat Identification Using Multiple Tuav Swarm

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In modern warfare, Tactical Unmanned Aerial Vehicles (TUAVs) are rapidly taking on a leading role in traditional and non-traditional ISR, to include Automatic Target Recognition (ATR). However, additional advancements in processors and sensors on TUAVs are still needed before they can be widely employed as a primary source for positive identification in the Combat Identification (CID) process. Cost is a driving factor for operating an ATR system using multiple TUAVs. The cost of high quality sensors appropriate for a single TUAV can be significantly higher than less sophisticated sensors suitable for deployment on a group, or swarm, of coordinated TUAVs. Employing two or more coordinated TUAVs with less complex sensors may lead to an equivalent or even better CID call than sending a single TUAV with more sophisticated sensors at a significantly higher cost. In addition, the coordinated TUAVs may be capable of reducing the time needed to correctly discriminate an object. Five measures of performance (accuracy, number of TUAVs shot down, TUAV preparation time, mean of decision time, mean of simulated mission time) from the simulation models are collected to compare the swarm system to the single TUAV system. Statistical comparisons are conducted using a paired t-test. The results illustrate improved performance of our swarm systems across most measures of performance.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Biblioscholar
Date
1 November 2012
Pages
82
ISBN
9781288313846

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In modern warfare, Tactical Unmanned Aerial Vehicles (TUAVs) are rapidly taking on a leading role in traditional and non-traditional ISR, to include Automatic Target Recognition (ATR). However, additional advancements in processors and sensors on TUAVs are still needed before they can be widely employed as a primary source for positive identification in the Combat Identification (CID) process. Cost is a driving factor for operating an ATR system using multiple TUAVs. The cost of high quality sensors appropriate for a single TUAV can be significantly higher than less sophisticated sensors suitable for deployment on a group, or swarm, of coordinated TUAVs. Employing two or more coordinated TUAVs with less complex sensors may lead to an equivalent or even better CID call than sending a single TUAV with more sophisticated sensors at a significantly higher cost. In addition, the coordinated TUAVs may be capable of reducing the time needed to correctly discriminate an object. Five measures of performance (accuracy, number of TUAVs shot down, TUAV preparation time, mean of decision time, mean of simulated mission time) from the simulation models are collected to compare the swarm system to the single TUAV system. Statistical comparisons are conducted using a paired t-test. The results illustrate improved performance of our swarm systems across most measures of performance.

Read More
Format
Paperback
Publisher
Biblioscholar
Date
1 November 2012
Pages
82
ISBN
9781288313846