Electronic Image Stabilization for Mobile Robotic Vision Systems

Michael John Smith

Electronic Image Stabilization for Mobile Robotic Vision Systems
Format
Paperback
Publisher
Biblioscholar
Published
1 November 2012
Pages
124
ISBN
9781288313549

Electronic Image Stabilization for Mobile Robotic Vision Systems

Michael John Smith

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

When a camera is affixed on a dynamic mobile robot, image stabilization is the first step towards more complex analysis on the video feed. This thesis presents a novel electronic image stabilization (EIS) algorithm for small inexpensive highly dynamic mobile robotic platforms with onboard camera systems. The algorithm combines optical flow motion parameter estimation with angular rate data provided by a strapdown inertial measurement unit (IMU). A discrete Kalman filter in feedforward configuration is used for optimal fusion of the two data sources. Performance evaluations are conducted by a simulated video truth model (capturing the effects of image translation, rotation, blurring, and moving objects), and live test data. Live data was collected from a camera and IMU affixed to the DAGSI Whegs mobile robotic platform as it navigated through a hallway. Template matching, feature detection, optical flow, and inertial measurement techniques are compared and analyzed to determine the most suitable algorithm for this specific type of image stabilization. Pyramidal Lucas- Kanade optical flow using Shi-Tomasi good features in combination with inertial measurement is the EIS algorithm found to be superior. In the presence of moving objects, fusion of inertial measurement reduces optical flow root-mean-squared(RMS) error in motion parameter estimates by 40%. No previous image stabilization algorithm to date directly fuses optical flow estimation with inertial measurement by way of Kalman filtering.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.