Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Coverage of Continuous Regions in Euclidean Space Using Homogeneous Resources with Application to the Allocation of Phased Array Radar Systems
Paperback

Coverage of Continuous Regions in Euclidean Space Using Homogeneous Resources with Application to the Allocation of Phased Array Radar Systems

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Air surveillance of United States territory is an essential Department of Defense function. In the event of an incoming aerial attack on North America, the DoD, Department of Homeland Security, and Federal Aviation Administration surveillance capabilities are critical to discovering and tracking the threat so that it can be eliminated. Many of the currently used surveillance radar will reach the end of their design life within ten to twenty years. By replacing the current radar network with a single integrated network of Multifunction Phased Array Radar (MPAR) units, surveillance capabilities can be enhanced and life cycle cost can be reduced. The problem of determining the location of required MPAR units to provide sufficient air surveillance of a given area is a large problem that could require a prohibitively long time to solve. By representing the area of surveillance as a polygon and the MPAR units as guards with a defined circle of detection, this problem as well as similar surveillance or coverage problems can be expressed with easily adjustable parameters. The problem of covering the interior and exterior of a polygon region with a minimal number of guards with homogeneous capabilities is not well researched. There are no methods for determining the minimal number of guards required to cover the interior and exterior of a polygon at a desired coverage level less than 100 percent.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Biblioscholar
Date
16 November 2012
Pages
148
ISBN
9781288307951

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Air surveillance of United States territory is an essential Department of Defense function. In the event of an incoming aerial attack on North America, the DoD, Department of Homeland Security, and Federal Aviation Administration surveillance capabilities are critical to discovering and tracking the threat so that it can be eliminated. Many of the currently used surveillance radar will reach the end of their design life within ten to twenty years. By replacing the current radar network with a single integrated network of Multifunction Phased Array Radar (MPAR) units, surveillance capabilities can be enhanced and life cycle cost can be reduced. The problem of determining the location of required MPAR units to provide sufficient air surveillance of a given area is a large problem that could require a prohibitively long time to solve. By representing the area of surveillance as a polygon and the MPAR units as guards with a defined circle of detection, this problem as well as similar surveillance or coverage problems can be expressed with easily adjustable parameters. The problem of covering the interior and exterior of a polygon region with a minimal number of guards with homogeneous capabilities is not well researched. There are no methods for determining the minimal number of guards required to cover the interior and exterior of a polygon at a desired coverage level less than 100 percent.

Read More
Format
Paperback
Publisher
Biblioscholar
Date
16 November 2012
Pages
148
ISBN
9781288307951