Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
A complete guide to electric vehicle design, operation, and adoption
This hands-on resource thoroughly explains the technologies and techniques involved in the design and operation of today's electric vehicles. Originally written for use in a course co-taught by the authors at Stanford University, Electric Vehicle Engineering discusses the physics of vehicle motion; the electrical principles on which motors rely; the chemistry, operation, and charging of lithium-ion batteries; the design and operation of motor controllers; the energy efficiency and environmental impact of electric vehicles; and the policy and economics affecting their adoption. After teaching you the theory, the authors will guide you through a hands-on project in which you will build a model electric car from the ground up with a hand-wound electric motor of your own design.
Coverage includes:
Introduction to electric vehicles Electric vehicle history Vehicle dynamics Electric motors Lithium-ion batteries Controllers Well-to-wheels energy and emissions analysis Electric vehicle policies and economics Future prospects
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
A complete guide to electric vehicle design, operation, and adoption
This hands-on resource thoroughly explains the technologies and techniques involved in the design and operation of today's electric vehicles. Originally written for use in a course co-taught by the authors at Stanford University, Electric Vehicle Engineering discusses the physics of vehicle motion; the electrical principles on which motors rely; the chemistry, operation, and charging of lithium-ion batteries; the design and operation of motor controllers; the energy efficiency and environmental impact of electric vehicles; and the policy and economics affecting their adoption. After teaching you the theory, the authors will guide you through a hands-on project in which you will build a model electric car from the ground up with a hand-wound electric motor of your own design.
Coverage includes:
Introduction to electric vehicles Electric vehicle history Vehicle dynamics Electric motors Lithium-ion batteries Controllers Well-to-wheels energy and emissions analysis Electric vehicle policies and economics Future prospects