Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Nuclear Forensics: Measurements of Uranium Oxides Using Time-Of-Flight Secondary Ion Mass Spectrometry
Paperback

Nuclear Forensics: Measurements of Uranium Oxides Using Time-Of-Flight Secondary Ion Mass Spectrometry

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over the past decade, law enforcement, governmental and public agencies have been stymied by the threat of the trafficking of nuclear materials. During this time span, reports from the International Atomic Energy Agency of illicit trafficking have increased eightfold from 20 to 160. For this reason, nuclear forensics is a burgeoning science focused on the identification of seized special nuclear materials. Identification of these materials is based upon the wealth of information that can be obtained by applying multiple analytical and measurement technologies. All of the information gained from each sample can then be used to further characterize other samples culminating in the inclusion of all of the collected data into a central database. Information must be reported in a timely manner as actionable results need to be presented as quickly as possible if there is to be any attribution for trafficking of nuclear material. Identification parameters such as uranium content, isotopic composition, and levels of impurities can be measured simultaneously in an effort to completely characterize a sample. All of these measurements combined can offer information as to the source of the material and its intended use. Many of the current analytical techniques used in nuclear forensics require extensive sample preparation and offer minimal amounts of information about the sample. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is presented as a rapid analytical technique that provides many of these identification parameters with minimal sample preparation. TOF-SIMS spectra were collected on eight different standard reference materials covering a range of stoichiometries and levels of enrichment. Samples included UO2, UO3 and U3O8 stoichiometries ranging from slightly depleted (0.5% 235U) to highly enriched (90.0% 235U) uranium. Spectra were simulated in an effort to deconvolve composite peaks resulting from the protonation of cluster ions.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Biblioscholar
Date
17 October 2012
Pages
192
ISBN
9781249834014

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over the past decade, law enforcement, governmental and public agencies have been stymied by the threat of the trafficking of nuclear materials. During this time span, reports from the International Atomic Energy Agency of illicit trafficking have increased eightfold from 20 to 160. For this reason, nuclear forensics is a burgeoning science focused on the identification of seized special nuclear materials. Identification of these materials is based upon the wealth of information that can be obtained by applying multiple analytical and measurement technologies. All of the information gained from each sample can then be used to further characterize other samples culminating in the inclusion of all of the collected data into a central database. Information must be reported in a timely manner as actionable results need to be presented as quickly as possible if there is to be any attribution for trafficking of nuclear material. Identification parameters such as uranium content, isotopic composition, and levels of impurities can be measured simultaneously in an effort to completely characterize a sample. All of these measurements combined can offer information as to the source of the material and its intended use. Many of the current analytical techniques used in nuclear forensics require extensive sample preparation and offer minimal amounts of information about the sample. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is presented as a rapid analytical technique that provides many of these identification parameters with minimal sample preparation. TOF-SIMS spectra were collected on eight different standard reference materials covering a range of stoichiometries and levels of enrichment. Samples included UO2, UO3 and U3O8 stoichiometries ranging from slightly depleted (0.5% 235U) to highly enriched (90.0% 235U) uranium. Spectra were simulated in an effort to deconvolve composite peaks resulting from the protonation of cluster ions.

Read More
Format
Paperback
Publisher
Biblioscholar
Date
17 October 2012
Pages
192
ISBN
9781249834014