Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Indici Generali Analitici Ed Alfabetici: Dell Lettere Edite Ed Inedite (1887)
Paperback

Indici Generali Analitici Ed Alfabetici: Dell Lettere Edite Ed Inedite (1887)

$67.99
Sign in or become a Readings Member to add this title to your wishlist.

In this work we construct and study families of generalized orthogonal polynomials with hermitian matrix argument associated to a family of orthogonal polynomials on R. Different normalizations for these polynomials are considered and we obtain some classical formulas for orthogonal polynomials from the corresponding formulas for the one-dimensional polynomials. We also construct semigroups of operators associated to the generalized orthogonal polynomials and we give an expression of the infinitesimal generator of this semigroup and, in the classical cases, we prove that this semigroup is also Markov. For d-dimensional Jacobi expansions we study the notions of fractional integral (Riesz potentials), Bessel potentials and fractional derivatives. We present a novel decomposition of the L2 space associated with the d-dimensional Jacobi measure and obtain an analogous of Meyer’s multiplier theorem in this setting. Sobolev Jacobi spaces are also studied.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Kessinger Publishing
Country
United States
Date
10 September 2010
Pages
96
ISBN
9781166710293

In this work we construct and study families of generalized orthogonal polynomials with hermitian matrix argument associated to a family of orthogonal polynomials on R. Different normalizations for these polynomials are considered and we obtain some classical formulas for orthogonal polynomials from the corresponding formulas for the one-dimensional polynomials. We also construct semigroups of operators associated to the generalized orthogonal polynomials and we give an expression of the infinitesimal generator of this semigroup and, in the classical cases, we prove that this semigroup is also Markov. For d-dimensional Jacobi expansions we study the notions of fractional integral (Riesz potentials), Bessel potentials and fractional derivatives. We present a novel decomposition of the L2 space associated with the d-dimensional Jacobi measure and obtain an analogous of Meyer’s multiplier theorem in this setting. Sobolev Jacobi spaces are also studied.

Read More
Format
Paperback
Publisher
Kessinger Publishing
Country
United States
Date
10 September 2010
Pages
96
ISBN
9781166710293