Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Data Science for Wind Energy
Hardback

Data Science for Wind Energy

$541.99
Sign in or become a Readings Member to add this title to your wishlist.

Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe.

Features

Provides an integral treatment of data science methods and wind energy applications

Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs

Presents real data, case studies and computer codes from wind energy research and industrial practice

Covers material based on the author’s ten plus years of academic research and insights

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
24 May 2019
Pages
400
ISBN
9781138590526

Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe.

Features

Provides an integral treatment of data science methods and wind energy applications

Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs

Presents real data, case studies and computer codes from wind energy research and industrial practice

Covers material based on the author’s ten plus years of academic research and insights

Read More
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
24 May 2019
Pages
400
ISBN
9781138590526