Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Uncertainty Analysis in Rainfall-Runoff Modelling - Application of Machine Learning Techniques: UNESCO-IHE PhD Thesis
Hardback

Uncertainty Analysis in Rainfall-Runoff Modelling - Application of Machine Learning Techniques: UNESCO-IHE PhD Thesis

$398.99
Sign in or become a Readings Member to add this title to your wishlist.

This book describes the use of machine learning techniques to build predictive models of uncertainty with application to hydrological models, focusing mainly on the development and testing of two different models. The first focuses on parameter uncertainty analysis by emulating the results of Monte Carlo simulation of hydrological models using efficient machine learning techniques. The second method aims at modelling uncertainty by building an ensemble of specialized machine learning models on the basis of past hydrological model’s performance. The book then demonstrates the capacity of machine learning techniques for building accurate and efficient predictive models of uncertainty.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
20 July 2017
Pages
222
ISBN
9781138424098

This book describes the use of machine learning techniques to build predictive models of uncertainty with application to hydrological models, focusing mainly on the development and testing of two different models. The first focuses on parameter uncertainty analysis by emulating the results of Monte Carlo simulation of hydrological models using efficient machine learning techniques. The second method aims at modelling uncertainty by building an ensemble of specialized machine learning models on the basis of past hydrological model’s performance. The book then demonstrates the capacity of machine learning techniques for building accurate and efficient predictive models of uncertainty.

Read More
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
20 July 2017
Pages
222
ISBN
9781138424098