Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Deep Learning for Physical Scientists - Accelerating Research with Machine Learning
Hardback

Deep Learning for Physical Scientists - Accelerating Research with Machine Learning

$244.99
Sign in or become a Readings Member to add this title to your wishlist.

Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field

Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome.

Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader.

From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy:

A thorough introduction to the basic classification and regression with perceptrons
An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training
An examination of multi-layer perceptrons for learning from descriptors and de-noising data
Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images
A treatment of Bayesian optimization for tuning deep learning architectures

Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.

Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.

This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: *Basic classification and regression with perceptrons *Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training *Multi-Layer Perceptrons for learning from descriptors, and de-noising data *Recurrent neural networks for learning from sequences *Convolutional neural networks for learning from images *Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.

Market Description
This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including:
* Basic classification and regression with perceptrons * Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training * Multi-Layer Perceptrons for learning from descriptors, and de-noising data * Recurrent neural networks for learning from sequences * Convolutional neural networks for learning from images * Bayesian optimization for tuning deep learning architectures
Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
John Wiley and Sons Ltd
Country
United States
Date
21 October 2021
Pages
208
ISBN
9781119408338

Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field

Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome.

Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader.

From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy:

A thorough introduction to the basic classification and regression with perceptrons
An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training
An examination of multi-layer perceptrons for learning from descriptors and de-noising data
Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images
A treatment of Bayesian optimization for tuning deep learning architectures

Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.

Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.

This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: *Basic classification and regression with perceptrons *Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training *Multi-Layer Perceptrons for learning from descriptors, and de-noising data *Recurrent neural networks for learning from sequences *Convolutional neural networks for learning from images *Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.

Market Description
This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including:
* Basic classification and regression with perceptrons * Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training * Multi-Layer Perceptrons for learning from descriptors, and de-noising data * Recurrent neural networks for learning from sequences * Convolutional neural networks for learning from images * Bayesian optimization for tuning deep learning architectures
Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.

Read More
Format
Hardback
Publisher
John Wiley and Sons Ltd
Country
United States
Date
21 October 2021
Pages
208
ISBN
9781119408338