Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Nonparametric Statistics with Applications to Science and Engineering with R
Hardback

Nonparametric Statistics with Applications to Science and Engineering with R

$325.99
Sign in or become a Readings Member to add this title to your wishlist.

Introduction to the methods and techniques of traditional and modern nonparametric statistics, incorporating R code

Nonparametric Statistics with Applications to Science and Engineering presents modern nonparametric statistics from a practical point of view, with the newly revised edition including custom R functions implementing nonparametric methods to explain how to compute them and make them more comprehensible.

Relevant built-in functions and packages on CRAN are also provided with a sample code. R codes in the new edition not only enable readers to perform nonparametric analysis easily, but also to visualize and explore data using R’s powerful graphic systems, such as ggplot2 package and R base graphic system.

The new edition includes useful tables at the end of each chapter that help the reader find data sets, files, functions, and packages that are used and relevant to the respective chapter. New examples and exercises that enable readers to gain a deeper insight into nonparametric statistics and increase their comprehension are also included, with answers available on a companion site for students and instructors.

Some of the sample topics discussed in Nonparametric Statistics with Applications to Science and Engineering include:

Basics of probability, statistics, Bayesian statistics, order statistics, Kolmogorov-Smirnov test statistics, rank tests, and designed experiments Categorical data, estimating distribution functions, density estimation, least squares regression, curve fitting techniques, wavelets, and bootstrap sampling EM algorithms, statistical learning, nonparametric Bayes, WinBUGS, properties of ranks, and Spearman coefficient of rank correlation Chi-square and goodness-of-fit, contingency tables, fisher exact test, MC Nemar test, Cochran’s test, Mantel-Haenszel test, and Simpson’s paradox

Nonparametric Statistics with Applications to Science and Engineering is a highly valuable resource for graduate students in engineering and the physical and mathematical sciences, as well as researchers who need a more comprehensive, but succinct understanding of modern nonparametric statistical methods.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
John Wiley and Sons Ltd
Country
United States
Date
3 November 2022
Pages
448
ISBN
9781119268130

Introduction to the methods and techniques of traditional and modern nonparametric statistics, incorporating R code

Nonparametric Statistics with Applications to Science and Engineering presents modern nonparametric statistics from a practical point of view, with the newly revised edition including custom R functions implementing nonparametric methods to explain how to compute them and make them more comprehensible.

Relevant built-in functions and packages on CRAN are also provided with a sample code. R codes in the new edition not only enable readers to perform nonparametric analysis easily, but also to visualize and explore data using R’s powerful graphic systems, such as ggplot2 package and R base graphic system.

The new edition includes useful tables at the end of each chapter that help the reader find data sets, files, functions, and packages that are used and relevant to the respective chapter. New examples and exercises that enable readers to gain a deeper insight into nonparametric statistics and increase their comprehension are also included, with answers available on a companion site for students and instructors.

Some of the sample topics discussed in Nonparametric Statistics with Applications to Science and Engineering include:

Basics of probability, statistics, Bayesian statistics, order statistics, Kolmogorov-Smirnov test statistics, rank tests, and designed experiments Categorical data, estimating distribution functions, density estimation, least squares regression, curve fitting techniques, wavelets, and bootstrap sampling EM algorithms, statistical learning, nonparametric Bayes, WinBUGS, properties of ranks, and Spearman coefficient of rank correlation Chi-square and goodness-of-fit, contingency tables, fisher exact test, MC Nemar test, Cochran’s test, Mantel-Haenszel test, and Simpson’s paradox

Nonparametric Statistics with Applications to Science and Engineering is a highly valuable resource for graduate students in engineering and the physical and mathematical sciences, as well as researchers who need a more comprehensive, but succinct understanding of modern nonparametric statistical methods.

Read More
Format
Hardback
Publisher
John Wiley and Sons Ltd
Country
United States
Date
3 November 2022
Pages
448
ISBN
9781119268130