Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Modelling transport and mixing by turbulence in complex flows are huge challenges for Computational Fluid Dynamics (CFD). This highly readable book introduces readers to modelling levels that respect the physical complexity of turbulent flows. It examines the hierarchy of RANS closures in various situations ranging from fundamental flows to three-dimensional industrial and environmental applications. The general second-moment closure is simplified to linear eddy-viscosity models, demonstrating how to assess the applicability of simpler schemes and the conditions under which they give satisfactory predictions. The principal changes for the second edition reflect the impact of computing power: a new chapter devoted to unsteady RANS and another on how LES and RANS strategies can be effectively combined for particular applications. It will remain the standard for those in industry and academia seeking expert guidance on modelling options available, and for graduate students in physics, applied mathematics and engineering entering the world of turbulent flow CFD.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Modelling transport and mixing by turbulence in complex flows are huge challenges for Computational Fluid Dynamics (CFD). This highly readable book introduces readers to modelling levels that respect the physical complexity of turbulent flows. It examines the hierarchy of RANS closures in various situations ranging from fundamental flows to three-dimensional industrial and environmental applications. The general second-moment closure is simplified to linear eddy-viscosity models, demonstrating how to assess the applicability of simpler schemes and the conditions under which they give satisfactory predictions. The principal changes for the second edition reflect the impact of computing power: a new chapter devoted to unsteady RANS and another on how LES and RANS strategies can be effectively combined for particular applications. It will remain the standard for those in industry and academia seeking expert guidance on modelling options available, and for graduate students in physics, applied mathematics and engineering entering the world of turbulent flow CFD.