Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
In many systems consisting of interacting subsystems, the complex interactions between elements can be represented using multilayer networks. However percolation, key to understanding connectivity and robustness, is not trivially generalised to multiple layers. This Element describes a generalisation of percolation to multilayer networks: weak multiplex percolation. A node belongs to a connected component if at least one of its neighbours in each layer is in this component. The authors fully describe the critical phenomena of this process. In two layers with finite second moments of the degree distributions the authors observe an unusual continuous transition with quadratic growth above the threshold. When the second moments diverge, the singularity is determined by the asymptotics of the degree distributions, creating a rich set of critical behaviours. In three or more layers the authors find a discontinuous hybrid transition which persists even in highly heterogeneous degree distributions, becoming continuous only when the powerlaw exponent reaches $1+1/(M-1)$ for $M$ layers.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
In many systems consisting of interacting subsystems, the complex interactions between elements can be represented using multilayer networks. However percolation, key to understanding connectivity and robustness, is not trivially generalised to multiple layers. This Element describes a generalisation of percolation to multilayer networks: weak multiplex percolation. A node belongs to a connected component if at least one of its neighbours in each layer is in this component. The authors fully describe the critical phenomena of this process. In two layers with finite second moments of the degree distributions the authors observe an unusual continuous transition with quadratic growth above the threshold. When the second moments diverge, the singularity is determined by the asymptotics of the degree distributions, creating a rich set of critical behaviours. In three or more layers the authors find a discontinuous hybrid transition which persists even in highly heterogeneous degree distributions, becoming continuous only when the powerlaw exponent reaches $1+1/(M-1)$ for $M$ layers.