Abstract Chiral Polytopes
Daniel Pellicer
Abstract Chiral Polytopes
Daniel Pellicer
Abstract polytopes are partially ordered sets that satisfy some key aspects of the face lattices of convex polytopes. They are chiral if they have maximal symmetry by combinatorial rotations, but none by combinatorial reflections. Aimed at graduate students and researchers in combinatorics, group theory or Euclidean geometry, this text gives a self-contained introduction to abstract polytopes and specialises in chiral abstract polytopes. The first three chapters are introductory and mostly contain basic concepts and results. The fourth chapter talks about ways to obtain chiral abstract polytopes from other abstract polytopes, while the fifth discusses families of chiral polytopes grouped by common properties such as their rank, their small size or their geometric origin. Finally, the last chapter relates chiral polytopes with geometric objects in Euclidean spaces. This material is complemented by a number of examples, exercises and figures, and a list of 75 open problems to inspire further research.
Order online and we’ll ship when available (30 April 2025)
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.