Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Our energy-hungry world increasingly relies on new methods to store and convert energy for portable electronics, as well as environmentally friendly modes of transportation and electrical energy generation. The development of high-performance power sources are intimately linked to the availability of advanced materials. Designing batteries and capacitors with higher specific energy and power, longer cycle life and rapid charge/discharge rates requires a deeper understanding of the relationship between materials properties and performance. Fuel cells, which offer the potential for clean, efficient conversion of chemical energy to electrical energy, are hampered by high cost and performance problems which can be resolved by new materials and processing techniques. Advanced batteries such as lithium-ion and nickel-metal hydride offer the potential for improved performance if low-cost materials can be developed. This book shares research and highlights the importance of materials in energy conversion technologies. Topics include: rechargeable batteries; lithium-ion rechargeable batteries - modelling; fuel cells; lithium-ion rechargeable batteries - cathode materials; battery electrolytes, interfaces and passive films; lithium-ion rechargeable batteries - anode materials and supercapacitors.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Our energy-hungry world increasingly relies on new methods to store and convert energy for portable electronics, as well as environmentally friendly modes of transportation and electrical energy generation. The development of high-performance power sources are intimately linked to the availability of advanced materials. Designing batteries and capacitors with higher specific energy and power, longer cycle life and rapid charge/discharge rates requires a deeper understanding of the relationship between materials properties and performance. Fuel cells, which offer the potential for clean, efficient conversion of chemical energy to electrical energy, are hampered by high cost and performance problems which can be resolved by new materials and processing techniques. Advanced batteries such as lithium-ion and nickel-metal hydride offer the potential for improved performance if low-cost materials can be developed. This book shares research and highlights the importance of materials in energy conversion technologies. Topics include: rechargeable batteries; lithium-ion rechargeable batteries - modelling; fuel cells; lithium-ion rechargeable batteries - cathode materials; battery electrolytes, interfaces and passive films; lithium-ion rechargeable batteries - anode materials and supercapacitors.