Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Symposium C, ‘Fundamentals of Low-Dimensional Carbon Nanomaterials’, was held November 29-December 3 at the 2010 MRS Fall Meeting in Boston, Massachusetts. This resultant proceedings volume includes topics such as growth techniques for CNTs and graphene, structural characterization, novel properties, and interface and surface structures. Low-dimensional carbon nanostructures exhibit a rich structural diversity from zero-dimensional C60, one-dimensional carbon nanotubes (CNTs), and two-dimensional graphene and graphite oxides. These low-dimensional carbon nanostructures are at the forefront of materials science and provide a platform for understanding the growth mechanisms and properties of nanostructures in general. They exhibit novel properties with endless potential applications from high-speed electronics to high-performance composites. Although low-dimensional carbon nanomaterials have attracted great interest in the research community, the applications and commercialization of graphene and CNTs have, to date, not been as successful as anticipated. The need for significant improvements in material quality and structural uniformity exists.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Symposium C, ‘Fundamentals of Low-Dimensional Carbon Nanomaterials’, was held November 29-December 3 at the 2010 MRS Fall Meeting in Boston, Massachusetts. This resultant proceedings volume includes topics such as growth techniques for CNTs and graphene, structural characterization, novel properties, and interface and surface structures. Low-dimensional carbon nanostructures exhibit a rich structural diversity from zero-dimensional C60, one-dimensional carbon nanotubes (CNTs), and two-dimensional graphene and graphite oxides. These low-dimensional carbon nanostructures are at the forefront of materials science and provide a platform for understanding the growth mechanisms and properties of nanostructures in general. They exhibit novel properties with endless potential applications from high-speed electronics to high-performance composites. Although low-dimensional carbon nanomaterials have attracted great interest in the research community, the applications and commercialization of graphene and CNTs have, to date, not been as successful as anticipated. The need for significant improvements in material quality and structural uniformity exists.