Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Simplicial Algorithms for Minimizing Polyhedral Functions
Paperback

Simplicial Algorithms for Minimizing Polyhedral Functions

$71.99
Sign in or become a Readings Member to add this title to your wishlist.

Polyhedral functions provide a model for an important class of problems that includes both linear programming and applications in data analysis. General methods for minimizing such functions using the polyhedral geometry explicitly are developed. Such methods approach a minimum by moving from extreme point to extreme point along descending edges and are described generically as simplicial. The best-known member of this class is the simplex method of linear programming, but simplicial methods have found important applications in discrete approximation and statistics. The general approach considered in this text, first published in 2001, has permitted the development of finite algorithms for the rank regression problem. The key ideas are those of developing a general format for specifying the polyhedral function and the application of this to derive multiplier conditions to characterize optimality. Also considered is the application of the general approach to the development of active set algorithms for polyhedral function constrained problems and associated Lagrangian forms.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
15 September 2011
Pages
262
ISBN
9781107403505

Polyhedral functions provide a model for an important class of problems that includes both linear programming and applications in data analysis. General methods for minimizing such functions using the polyhedral geometry explicitly are developed. Such methods approach a minimum by moving from extreme point to extreme point along descending edges and are described generically as simplicial. The best-known member of this class is the simplex method of linear programming, but simplicial methods have found important applications in discrete approximation and statistics. The general approach considered in this text, first published in 2001, has permitted the development of finite algorithms for the rank regression problem. The key ideas are those of developing a general format for specifying the polyhedral function and the application of this to derive multiplier conditions to characterize optimality. Also considered is the application of the general approach to the development of active set algorithms for polyhedral function constrained problems and associated Lagrangian forms.

Read More
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
15 September 2011
Pages
262
ISBN
9781107403505