Fourier Integrals in Classical Analysis

Christopher D. Sogge (The Johns Hopkins University)

Fourier Integrals in Classical Analysis
Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Published
27 April 2017
Pages
348
ISBN
9781107120075

Fourier Integrals in Classical Analysis

Christopher D. Sogge (The Johns Hopkins University)

This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hoermander’s propagation of singularities theorem and uses this to prove the Duistermaat-Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.

This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.