Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Aimed at students taking laboratory courses in experimental optics, this book introduces readers to optical instruments and their uses. The book explains the basic operation of lenses, mirrors, telescopes in the laboratory and under field conditions, how to use optical instruments to their maximum potential and how to keep them in working order. It gives an account of the laws of geometrical optics which govern the design, layout and working of optical instruments. The book describes the interactions of polarised light with matter and the instruments and devices derived from this, and discusses the choice of spectrometers and detectors for various spectral regions, with particular attention to CCD cameras. The emphasis throughout is on description, with mathematical precision confined to the appendices, which explain the ray transfer matrix and outline the Seidel theory of optical aberrations. The appendices also introduce Fourier methods in optics and Fourier transform infra-red spectrometry.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Aimed at students taking laboratory courses in experimental optics, this book introduces readers to optical instruments and their uses. The book explains the basic operation of lenses, mirrors, telescopes in the laboratory and under field conditions, how to use optical instruments to their maximum potential and how to keep them in working order. It gives an account of the laws of geometrical optics which govern the design, layout and working of optical instruments. The book describes the interactions of polarised light with matter and the instruments and devices derived from this, and discusses the choice of spectrometers and detectors for various spectral regions, with particular attention to CCD cameras. The emphasis throughout is on description, with mathematical precision confined to the appendices, which explain the ray transfer matrix and outline the Seidel theory of optical aberrations. The appendices also introduce Fourier methods in optics and Fourier transform infra-red spectrometry.