Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport
Hardback

Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport

$300.99
Sign in or become a Readings Member to add this title to your wishlist.

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: * Statistical fluctuation formulae for the dielectric constant * Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions * High-order singular/hypersingular (Nystroem collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots * Absorbing and UPML boundary conditions * High-order hierarchical Nedelec edge elements * High-order discontinuous Galerkin (DG) and Yee finite difference time-domain methods * Finite element and plane wave frequency-domain methods for periodic structures * Generalized DG beam propagation method for optical waveguides * NEGF(Non-equilibrium Green’s function) and Wigner kinetic methods for quantum transport * High-order WENO and Godunov and central schemes for hydrodynamic transport * Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
3 January 2013
Pages
461
ISBN
9781107021051

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: * Statistical fluctuation formulae for the dielectric constant * Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions * High-order singular/hypersingular (Nystroem collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots * Absorbing and UPML boundary conditions * High-order hierarchical Nedelec edge elements * High-order discontinuous Galerkin (DG) and Yee finite difference time-domain methods * Finite element and plane wave frequency-domain methods for periodic structures * Generalized DG beam propagation method for optical waveguides * NEGF(Non-equilibrium Green’s function) and Wigner kinetic methods for quantum transport * High-order WENO and Godunov and central schemes for hydrodynamic transport * Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas

Read More
Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
3 January 2013
Pages
461
ISBN
9781107021051