Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: * Statistical fluctuation formulae for the dielectric constant * Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions * High-order singular/hypersingular (Nystroem collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots * Absorbing and UPML boundary conditions * High-order hierarchical Nedelec edge elements * High-order discontinuous Galerkin (DG) and Yee finite difference time-domain methods * Finite element and plane wave frequency-domain methods for periodic structures * Generalized DG beam propagation method for optical waveguides * NEGF(Non-equilibrium Green’s function) and Wigner kinetic methods for quantum transport * High-order WENO and Godunov and central schemes for hydrodynamic transport * Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: * Statistical fluctuation formulae for the dielectric constant * Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions * High-order singular/hypersingular (Nystroem collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots * Absorbing and UPML boundary conditions * High-order hierarchical Nedelec edge elements * High-order discontinuous Galerkin (DG) and Yee finite difference time-domain methods * Finite element and plane wave frequency-domain methods for periodic structures * Generalized DG beam propagation method for optical waveguides * NEGF(Non-equilibrium Green’s function) and Wigner kinetic methods for quantum transport * High-order WENO and Godunov and central schemes for hydrodynamic transport * Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas