Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Bayesian Econometric Modelling for Big Data
Hardback

Bayesian Econometric Modelling for Big Data

$203.99
Sign in or become a Readings Member to add this title to your wishlist.

This book delves into scalable Bayesian statistical methods designed to tackle the challenges posed by big data. It explores a variety of divide-and-conquer and subsampling techniques, seamlessly integrating these scalable methods into a broad spectrum of econometric models.

In addition to its focus on big data, the book introduces novel concepts within traditional statistics, such as the summation, subtraction, and multiplication of conjugate distributions. These arithmetic operators conceptualize pseudo data in the conjugate prior, sufficient statistics that determine the likelihood, and the posterior as a balance between data and prior information, adding an intriguing dimension to Bayesian analysis. This book also offers a deep dive into Bayesian computation. Given the intricacies of floating-point representation of real numbers, computer programs can sometimes yield unexpected or theoretically impossible results. Drawing from his experience as a senior statistical software developer, the author shares valuable strategies for designing numerically stable algorithms.

The book is an essential resource for a diverse audience: graduate students seeking foundational knowledge in Bayesian econometric models, early-career statisticians eager to explore cutting-edge advancements in scalable Bayesian methods, data analysts struggling with out-of-memory challenges in large datasets, and statistical software users and developers striving to program with efficiency and numerical stability.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
20 June 2025
Pages
488
ISBN
9781032915258

This book delves into scalable Bayesian statistical methods designed to tackle the challenges posed by big data. It explores a variety of divide-and-conquer and subsampling techniques, seamlessly integrating these scalable methods into a broad spectrum of econometric models.

In addition to its focus on big data, the book introduces novel concepts within traditional statistics, such as the summation, subtraction, and multiplication of conjugate distributions. These arithmetic operators conceptualize pseudo data in the conjugate prior, sufficient statistics that determine the likelihood, and the posterior as a balance between data and prior information, adding an intriguing dimension to Bayesian analysis. This book also offers a deep dive into Bayesian computation. Given the intricacies of floating-point representation of real numbers, computer programs can sometimes yield unexpected or theoretically impossible results. Drawing from his experience as a senior statistical software developer, the author shares valuable strategies for designing numerically stable algorithms.

The book is an essential resource for a diverse audience: graduate students seeking foundational knowledge in Bayesian econometric models, early-career statisticians eager to explore cutting-edge advancements in scalable Bayesian methods, data analysts struggling with out-of-memory challenges in large datasets, and statistical software users and developers striving to program with efficiency and numerical stability.

Read More
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
20 June 2025
Pages
488
ISBN
9781032915258