Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Advanced Materials in Engineering Applications
Paperback

Advanced Materials in Engineering Applications

$94.99
Sign in or become a Readings Member to add this title to your wishlist.

The formability features of sheets made of the alloy Al 8011 are examined experimentally and the results are compared with the numerical ones in this research. Through an axisymmetric finite element simulation of the Erichsen cupping test, formability characteristics were evaluated. The Erichsen cupping test was used to exam?ine the effects of several factors, including friction at the punch-sheet contact and sheet thickness. The nonlinear finite element method is used to calculate the dome height, stress, and strain values for the aluminum sheet, and the results are then compared to the numerical ones. The findings demonstrated that the Al 8011 alloy's form?ability greatly rises with increasing sheet thickness. The formability is significantly impacted by the lubricant. The application of the finite element technique to forecast the formability of Al 8011 alloy.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
18 November 2024
Pages
396
ISBN
9781032900469

The formability features of sheets made of the alloy Al 8011 are examined experimentally and the results are compared with the numerical ones in this research. Through an axisymmetric finite element simulation of the Erichsen cupping test, formability characteristics were evaluated. The Erichsen cupping test was used to exam?ine the effects of several factors, including friction at the punch-sheet contact and sheet thickness. The nonlinear finite element method is used to calculate the dome height, stress, and strain values for the aluminum sheet, and the results are then compared to the numerical ones. The findings demonstrated that the Al 8011 alloy's form?ability greatly rises with increasing sheet thickness. The formability is significantly impacted by the lubricant. The application of the finite element technique to forecast the formability of Al 8011 alloy.

Read More
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
18 November 2024
Pages
396
ISBN
9781032900469