Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This two-volume book set covers the recent advancements in the fabrication of flexible optoelectronic devices. It also provides different strategies and concepts related to the processing and application of advanced nanomaterials with layered structures for optoelectronic devices.
Advanced Nanomaterials for Solution-Processed Flexible Optoelectronic Devices (two-volume set) is made up of two independent volumes. Volume 1- Advanced Nanomaterials for Solution-Processed Flexible Optoelectronic Devices, provides up-to-date and state-of-the-art knowledge centered on the various non-layered nanomaterials and its different types of application in optoelectronic device fabrication. It discusses how to process non-layered advanced nanomaterials such as carbon nanotubes, fullerenes, nanowires, colloidal quantum dots, inorganic halide perovskite, perovskite nanomaterials stabilized in porous materials, doped-ZnO, lead chalcogenide nano crystals etc. for the easy fabrication of the optoelectronic devices at an industrial scale. Throughout the book the authors not only demonstrate device fabrication, but the processing of the advanced nanomaterials to make it suitable for wide applications as different components in optoelectronics. Volume two -Layered Nanomaterials for Solution-Processed Optoelectronics focuses on the processing and application of the 2D MXene into devices for energy conversion and storage. The readers will get insight into large area fabrication methods of the flexible devices using advanced nanomaterials with layered structures such as graphene, conjugated COFs, 2D-hBN (hexagonal boron nitride), silicene, two-dimensional polymer, transition metal dichalcogenides, black phosphorous etc. Each book also presents discussion on the current challenges and future perspectives for the proper processing and utilization of advanced nanomaterials for fabrication of devices.
This book set is intended for graduate students, researchers and engineers working in the area of advanced nanomaterials, energy conversion, energy storage, sensors and different types of optoelectronic devices.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This two-volume book set covers the recent advancements in the fabrication of flexible optoelectronic devices. It also provides different strategies and concepts related to the processing and application of advanced nanomaterials with layered structures for optoelectronic devices.
Advanced Nanomaterials for Solution-Processed Flexible Optoelectronic Devices (two-volume set) is made up of two independent volumes. Volume 1- Advanced Nanomaterials for Solution-Processed Flexible Optoelectronic Devices, provides up-to-date and state-of-the-art knowledge centered on the various non-layered nanomaterials and its different types of application in optoelectronic device fabrication. It discusses how to process non-layered advanced nanomaterials such as carbon nanotubes, fullerenes, nanowires, colloidal quantum dots, inorganic halide perovskite, perovskite nanomaterials stabilized in porous materials, doped-ZnO, lead chalcogenide nano crystals etc. for the easy fabrication of the optoelectronic devices at an industrial scale. Throughout the book the authors not only demonstrate device fabrication, but the processing of the advanced nanomaterials to make it suitable for wide applications as different components in optoelectronics. Volume two -Layered Nanomaterials for Solution-Processed Optoelectronics focuses on the processing and application of the 2D MXene into devices for energy conversion and storage. The readers will get insight into large area fabrication methods of the flexible devices using advanced nanomaterials with layered structures such as graphene, conjugated COFs, 2D-hBN (hexagonal boron nitride), silicene, two-dimensional polymer, transition metal dichalcogenides, black phosphorous etc. Each book also presents discussion on the current challenges and future perspectives for the proper processing and utilization of advanced nanomaterials for fabrication of devices.
This book set is intended for graduate students, researchers and engineers working in the area of advanced nanomaterials, energy conversion, energy storage, sensors and different types of optoelectronic devices.