Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Quantitative Operational Risk Models
Paperback

Quantitative Operational Risk Models

$95.99
Sign in or become a Readings Member to add this title to your wishlist.

Using real-life examples from the banking and insurance industries, Quantitative Operational Risk Models details how internal data can be improved based on external information of various kinds. Using a simple and intuitive methodology based on classical transformation methods, the book includes real-life examples of the combination of internal data and external information.

A guideline for practitioners, the book begins with the basics of managing operational risk data to more sophisticated and recent tools needed to quantify the capital requirements imposed by operational risk. The book then covers statistical theory prerequisites, and explains how to implement the new density estimation methods for analyzing the loss distribution in operational risk for banks and insurance companies. In addition, it provides:

Simple, intuitive, and general methods to improve on internal operational risk assessment

Univariate event loss severity distributions analyzed using semiparametric models

Methods for the introduction of underreporting information

A practical method to combine internal and external operational risk data, including guided examples in SAS and R

Measuring operational risk requires the knowledge of the quantitative tools and the comprehension of insurance activities in a very broad sense, both technical and commercial. Presenting a nonparametric approach to modeling operational risk data, Quantitative Operational Risk Models offers a practical perspective that combines statistical analysis and management orientations.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
29 March 2023
Pages
236
ISBN
9781032477572

Using real-life examples from the banking and insurance industries, Quantitative Operational Risk Models details how internal data can be improved based on external information of various kinds. Using a simple and intuitive methodology based on classical transformation methods, the book includes real-life examples of the combination of internal data and external information.

A guideline for practitioners, the book begins with the basics of managing operational risk data to more sophisticated and recent tools needed to quantify the capital requirements imposed by operational risk. The book then covers statistical theory prerequisites, and explains how to implement the new density estimation methods for analyzing the loss distribution in operational risk for banks and insurance companies. In addition, it provides:

Simple, intuitive, and general methods to improve on internal operational risk assessment

Univariate event loss severity distributions analyzed using semiparametric models

Methods for the introduction of underreporting information

A practical method to combine internal and external operational risk data, including guided examples in SAS and R

Measuring operational risk requires the knowledge of the quantitative tools and the comprehension of insurance activities in a very broad sense, both technical and commercial. Presenting a nonparametric approach to modeling operational risk data, Quantitative Operational Risk Models offers a practical perspective that combines statistical analysis and management orientations.

Read More
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
29 March 2023
Pages
236
ISBN
9781032477572