Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book provides a comprehensive theory of mono- and multi-fractal traffic, including the basics of long-range dependent time series and 1/f noise, ergodicity and predictability of traffic, traffic modeling and simulation, stationarity tests of traffic, traffic measurement and the anomaly detection of traffic in communications networks.
Proving that mono-fractal LRD time series is ergodic, the book exhibits that LRD traffic is stationary. The author shows that the stationarity of multi-fractal traffic relies on observation time scales, and proposes multi-fractional generalized Cauchy processes and modified multi-fractional Gaussian noise. The book also establishes a set of guidelines for determining the record length of traffic in measurement. Moreover, it presents an approach of traffic simulation, as well as the anomaly detection of traffic under distributed-denial-of service attacks.
Scholars and graduates studying network traffic in computer science will find the book beneficial.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book provides a comprehensive theory of mono- and multi-fractal traffic, including the basics of long-range dependent time series and 1/f noise, ergodicity and predictability of traffic, traffic modeling and simulation, stationarity tests of traffic, traffic measurement and the anomaly detection of traffic in communications networks.
Proving that mono-fractal LRD time series is ergodic, the book exhibits that LRD traffic is stationary. The author shows that the stationarity of multi-fractal traffic relies on observation time scales, and proposes multi-fractional generalized Cauchy processes and modified multi-fractional Gaussian noise. The book also establishes a set of guidelines for determining the record length of traffic in measurement. Moreover, it presents an approach of traffic simulation, as well as the anomaly detection of traffic under distributed-denial-of service attacks.
Scholars and graduates studying network traffic in computer science will find the book beneficial.