Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Supervised Learning
Hardback

Supervised Learning

$251.99
Sign in or become a Readings Member to add this title to your wishlist.

This book discusses the relevance of probabilistic supervised learning, to the pursuit of automated and reliable prediction of an unknown that is in a state of relationship with another variable. The book provides methods for secured mechanistic learning of the function that represents this relationship between the output and input variables, where said learning is undertaken within the remit of real-world information that can be messy in different ways. For example, the available data may be highly multivariate or be high-dimensional, reflecting the nature of the output variable that could be a vector, or matrix, or even higher in dimension, as is often the case in a real-world application. Additionally, the data is noisy, and often it is small to moderately large in size in multiple applications. Another difficulty that regularly arises is that the training dataset - comprising pairs of values of the input and output -is such, that the sought function cannot be captured by a parametric shape, but is instead underlined by an inhomogeneous correlation structure. These difficulties notwithstanding, we desire a streamlined methodology that allows the learning of the inter variable relationship - to ultimately permit fast and reliable predictions of the output, at newly recorded values of the input. In fact, occasions arise when one seeks values of the input at which a new output value is recorded, and such a demand is also addressed in the book.

The generic solution to the problem of secured supervised learning amidst real-world messiness, lies in treating the sought inter-variable relation as a (function-valued) random variable, which, being random, is ascribed a probability distribution. Then recalling that distributions on the space of functions are given by stochastic processes, the sought function is proposed to be a sample function of a stochastic process. This process is chosen as one that imposes minimal constraints on the sought function - identified as a Gaussian Process (GP) in the book. Thus, the sought function can be inferred upon, as long as the co-variance function of the underlying GP is learnt, given the available training set. The book presents probabilistic techniques to undertake said learning, within the challenges borne by the data, and illustrates such techniques on real data. Learning of a function is always followed by closed-form prediction of the mean and dispersion of the output variable that is realised at a test input.

To help with the background, the book includes reviews on stochastic processes and basic probability theory. This will render the first half of the book useful for students across disciplines, while the latter half will be appreciated by students of numerate subjects at the postgraduate level or higher, including students of computational sciences, statistics and mathematics.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
17 March 2025
Pages
344
ISBN
9781032283302

This book discusses the relevance of probabilistic supervised learning, to the pursuit of automated and reliable prediction of an unknown that is in a state of relationship with another variable. The book provides methods for secured mechanistic learning of the function that represents this relationship between the output and input variables, where said learning is undertaken within the remit of real-world information that can be messy in different ways. For example, the available data may be highly multivariate or be high-dimensional, reflecting the nature of the output variable that could be a vector, or matrix, or even higher in dimension, as is often the case in a real-world application. Additionally, the data is noisy, and often it is small to moderately large in size in multiple applications. Another difficulty that regularly arises is that the training dataset - comprising pairs of values of the input and output -is such, that the sought function cannot be captured by a parametric shape, but is instead underlined by an inhomogeneous correlation structure. These difficulties notwithstanding, we desire a streamlined methodology that allows the learning of the inter variable relationship - to ultimately permit fast and reliable predictions of the output, at newly recorded values of the input. In fact, occasions arise when one seeks values of the input at which a new output value is recorded, and such a demand is also addressed in the book.

The generic solution to the problem of secured supervised learning amidst real-world messiness, lies in treating the sought inter-variable relation as a (function-valued) random variable, which, being random, is ascribed a probability distribution. Then recalling that distributions on the space of functions are given by stochastic processes, the sought function is proposed to be a sample function of a stochastic process. This process is chosen as one that imposes minimal constraints on the sought function - identified as a Gaussian Process (GP) in the book. Thus, the sought function can be inferred upon, as long as the co-variance function of the underlying GP is learnt, given the available training set. The book presents probabilistic techniques to undertake said learning, within the challenges borne by the data, and illustrates such techniques on real data. Learning of a function is always followed by closed-form prediction of the mean and dispersion of the output variable that is realised at a test input.

To help with the background, the book includes reviews on stochastic processes and basic probability theory. This will render the first half of the book useful for students across disciplines, while the latter half will be appreciated by students of numerate subjects at the postgraduate level or higher, including students of computational sciences, statistics and mathematics.

Read More
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
17 March 2025
Pages
344
ISBN
9781032283302