Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Intrigued as much by its complex nature as by its outsider status in traditional organic chemistry, the editors of The Organic Chemistry of Sugars compile a groundbreaking resource in carbohydrate chemistry that illustrates the ease at which sugars can be manipulated in a variety of organic reactions.
Each chapter contains numerous examples demonstrating the methods and strategies that apply mainstream organic chemistry to the chemical modification of sugars. The book first describes the discovery, development, and impact of carbohydrates, followed by a discussion of protecting group strategies, glycosylation techniques, and oligosaccharide syntheses. Several chapters focus on reactions that convert sugars and carbohydrates to non-carbohydrate molecules including the substitution of sugar hydroxyl groups to new groups of synthetic or biological interest, cyclitols and carbasugars, as well as endocyclic heteroatom substitutions. Subsequent chapters demonstrate the use of sugars in chiral catalysis, their roles as convenient starting materials for complex syntheses involving multiple stereogenic centers, and syntheses for monosaccharides. The final chapters focus on new and emerging technologies, including approaches to combinatorial carbohydrate chemistry, the biological importance and chemical synthesis of glycopeptides, and the medicinally significant concept of glycomimetics.
Presenting the organic chemistry of sugars as a solution to many complex synthetic challenges, The Organic Chemistry of Sugars provides a comprehensive treatment of the manipulation of sugars and their importance in mainstream organic chemistry.
Daniel E. Levy, editor of the Drug Discovery Series, is the founder of DEL BioPharma, a consulting service for drug discovery programs. He also maintains a blog that explores organic chemistry.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Intrigued as much by its complex nature as by its outsider status in traditional organic chemistry, the editors of The Organic Chemistry of Sugars compile a groundbreaking resource in carbohydrate chemistry that illustrates the ease at which sugars can be manipulated in a variety of organic reactions.
Each chapter contains numerous examples demonstrating the methods and strategies that apply mainstream organic chemistry to the chemical modification of sugars. The book first describes the discovery, development, and impact of carbohydrates, followed by a discussion of protecting group strategies, glycosylation techniques, and oligosaccharide syntheses. Several chapters focus on reactions that convert sugars and carbohydrates to non-carbohydrate molecules including the substitution of sugar hydroxyl groups to new groups of synthetic or biological interest, cyclitols and carbasugars, as well as endocyclic heteroatom substitutions. Subsequent chapters demonstrate the use of sugars in chiral catalysis, their roles as convenient starting materials for complex syntheses involving multiple stereogenic centers, and syntheses for monosaccharides. The final chapters focus on new and emerging technologies, including approaches to combinatorial carbohydrate chemistry, the biological importance and chemical synthesis of glycopeptides, and the medicinally significant concept of glycomimetics.
Presenting the organic chemistry of sugars as a solution to many complex synthetic challenges, The Organic Chemistry of Sugars provides a comprehensive treatment of the manipulation of sugars and their importance in mainstream organic chemistry.
Daniel E. Levy, editor of the Drug Discovery Series, is the founder of DEL BioPharma, a consulting service for drug discovery programs. He also maintains a blog that explores organic chemistry.