Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This practical guide to optimization combines mathematical theory with hands-on coding examples to explore how Python can be used to model problems and obtain the best possible solutions. Presenting a balance of theory and practical applications, it is the ideal resource for upper-undergraduate and graduate students in applied mathematics, data science, business, industrial engineering and operations research, as well as practitioners in related fields. Beginning with an introduction to the concept of optimization, this text presents the key ingredients of an optimization problem and the choices one needs to make when modeling a real-life problem mathematically. Topics covered range from linear and network optimization to convex optimization and optimizations under uncertainty. The book's Python code snippets, alongside more than 50 Jupyter notebooks on the author's GitHub, allow students to put the theory into practice and solve problems inspired by real-life challenges, while numerous exercises sharpen students' understanding of the methods discussed.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This practical guide to optimization combines mathematical theory with hands-on coding examples to explore how Python can be used to model problems and obtain the best possible solutions. Presenting a balance of theory and practical applications, it is the ideal resource for upper-undergraduate and graduate students in applied mathematics, data science, business, industrial engineering and operations research, as well as practitioners in related fields. Beginning with an introduction to the concept of optimization, this text presents the key ingredients of an optimization problem and the choices one needs to make when modeling a real-life problem mathematically. Topics covered range from linear and network optimization to convex optimization and optimizations under uncertainty. The book's Python code snippets, alongside more than 50 Jupyter notebooks on the author's GitHub, allow students to put the theory into practice and solve problems inspired by real-life challenges, while numerous exercises sharpen students' understanding of the methods discussed.