The Calabi Problem for Fano Threefolds
Carolina Araujo, Ana-Maria Castravet, Ivan Cheltsov, Kento Fujita, Anne-Sophie Kaloghiros, Jesus Martinez-Garcia, Constantin Shramov, Hendrik Suess, Nivedita Viswanathan
The Calabi Problem for Fano Threefolds
Carolina Araujo, Ana-Maria Castravet, Ivan Cheltsov, Kento Fujita, Anne-Sophie Kaloghiros, Jesus Martinez-Garcia, Constantin Shramov, Hendrik Suess, Nivedita Viswanathan
Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of each family admits a Kaehler-Einstein metric (and for many families, for all elements), addressing a question going back to Calabi 70 years ago. The book's solution exploits the relation between these metrics and the algebraic notion of K-stability. Moreover, the book presents many different techniques to prove the existence of a Kaehler-Einstein metric, containing many additional relevant results such as the classification of all Kaehler-Einstein smooth Fano threefolds with infinite automorphism groups and computations of delta-invariants of all smooth del Pezzo surfaces. This book will be essential reading for researchers and graduate students working on algebraic geometry and complex geometry.
This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.