Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Benford's Law is a probability distribution for the likelihood of the leading digit in a set of numbers. This book seeks to improve and systematize the use of Benford's Law in the social sciences to assess the validity of self-reported data. The authors first introduce a new measure of conformity to the Benford distribution that is created using permutation statistical methods and employs the concept of statistical agreement. In a switch from a typical Benford application, this book moves away from using Benford's Law to test whether the data conform to the Benford distribution, to using it to draw conclusions about the validity of the data. The concept of 'Benford validity' is developed, which indicates whether a dataset is valid based on comparisons with the Benford distribution and, in relation to this, diagnostic procedure that assesses the impact of not having Benford validity on data analysis is devised.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Benford's Law is a probability distribution for the likelihood of the leading digit in a set of numbers. This book seeks to improve and systematize the use of Benford's Law in the social sciences to assess the validity of self-reported data. The authors first introduce a new measure of conformity to the Benford distribution that is created using permutation statistical methods and employs the concept of statistical agreement. In a switch from a typical Benford application, this book moves away from using Benford's Law to test whether the data conform to the Benford distribution, to using it to draw conclusions about the validity of the data. The concept of 'Benford validity' is developed, which indicates whether a dataset is valid based on comparisons with the Benford distribution and, in relation to this, diagnostic procedure that assesses the impact of not having Benford validity on data analysis is devised.