Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems
Randall J. LeVeque (University of Washington)
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems
Randall J. LeVeque (University of Washington)
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples. Exercises and student projects are available on the book’s webpage, along with Matlab mfiles for implementing methods. Readers will gain an understanding of the essential ideas that underlie the development, analysis, and practical use of finite difference methods as well as the key concepts of stability theory, their relation to one another, and their practical implications. The author provides a foundation from which students can approach more advanced topics.
This item is not currently in-stock. It can be ordered online and is expected to ship in approx 4 weeks
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.