Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Mining Imperfect Data: Dealing with Contamination and Incomplete Records
Paperback

Mining Imperfect Data: Dealing with Contamination and Incomplete Records

$313.99
Sign in or become a Readings Member to add this title to your wishlist.

Data mining is concerned with the analysis of databases large enough that various anomalies, including outliers, incomplete data records, and more subtle phenomena such as misalignment errors, are virtually certain to be present. Mining Imperfect Data: Dealing with Contamination and Incomplete Records describes in detail a number of these problems, as well as their sources, their consequences, their detection, and their treatment. Specific strategies for data pretreatment and analytical validation that are broadly applicable are described, making them useful in conjunction with most data mining analysis methods. Examples are presented to illustrate the performance of the pretreatment and validation methods in a variety of situations; these include simulation-based examples in which correct results are known unambiguously as well as real data examples that illustrate typical cases met in practice. Mining Imperfect Data, which deals with a wider range of data anomalies than are usually treated in one book, includes a discussion of detecting anomalies through generalized sensitivity analysis (GSA), a process of identifying inconsistencies using systematic and extensive comparisons of results obtained by analysis of exchangeable datasets or subsets. The book makes extensive use of real data, both in the form of a detailed analysis of a few real datasets and various published examples. Also included is a succinct introduction to functional equations that illustrates their utility in describing various forms of qualitative behavior for useful data characterizations.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Society for Industrial & Applied Mathematics,U.S.
Country
United States
Date
1 April 2005
Pages
184
ISBN
9780898715828

Data mining is concerned with the analysis of databases large enough that various anomalies, including outliers, incomplete data records, and more subtle phenomena such as misalignment errors, are virtually certain to be present. Mining Imperfect Data: Dealing with Contamination and Incomplete Records describes in detail a number of these problems, as well as their sources, their consequences, their detection, and their treatment. Specific strategies for data pretreatment and analytical validation that are broadly applicable are described, making them useful in conjunction with most data mining analysis methods. Examples are presented to illustrate the performance of the pretreatment and validation methods in a variety of situations; these include simulation-based examples in which correct results are known unambiguously as well as real data examples that illustrate typical cases met in practice. Mining Imperfect Data, which deals with a wider range of data anomalies than are usually treated in one book, includes a discussion of detecting anomalies through generalized sensitivity analysis (GSA), a process of identifying inconsistencies using systematic and extensive comparisons of results obtained by analysis of exchangeable datasets or subsets. The book makes extensive use of real data, both in the form of a detailed analysis of a few real datasets and various published examples. Also included is a succinct introduction to functional equations that illustrates their utility in describing various forms of qualitative behavior for useful data characterizations.

Read More
Format
Paperback
Publisher
Society for Industrial & Applied Mathematics,U.S.
Country
United States
Date
1 April 2005
Pages
184
ISBN
9780898715828