Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Bootstrapping, a computational nonparametric technique for ‘re-sampling’, enables researchers to draw a conclusion about the characteristics of a population strictly from the existing sample rather than by making parametric assumptions about the estimator. Using real data examples from per capita personal income to median preference differences between legislative committee members and the entire legislature, Mooney and Duval discuss how to apply bootstrapping when the underlying sampling distribution of the statistics cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, they show the advantages and limitations of four bootstrap confidence interval methods: normal approximation, percentile, bias-corrected percentile, and percentile-t. The authors conclude with a convenient summary of how to apply this computer-intensive methodology using various available software packages.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Bootstrapping, a computational nonparametric technique for ‘re-sampling’, enables researchers to draw a conclusion about the characteristics of a population strictly from the existing sample rather than by making parametric assumptions about the estimator. Using real data examples from per capita personal income to median preference differences between legislative committee members and the entire legislature, Mooney and Duval discuss how to apply bootstrapping when the underlying sampling distribution of the statistics cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, they show the advantages and limitations of four bootstrap confidence interval methods: normal approximation, percentile, bias-corrected percentile, and percentile-t. The authors conclude with a convenient summary of how to apply this computer-intensive methodology using various available software packages.