Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Mobile Robot Localization and Map Building: A Multisensor Fusion Approach
Hardback

Mobile Robot Localization and Map Building: A Multisensor Fusion Approach

$407.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

During the 1990s, many researchers dedicated their efforts to constructing revolutionary machines and to providing them with forms of artificial intelligence to perform some of the most hazardous, risky or monotonous tasks historically assigned to human beings. Among those machines, mobile robots are undoubtedly at the cutting edge of research directions. A rough classification of mobile robots can be considered: on the one hand, mobile robots oriented to human-made indoor environments; on the other hand, mobile robots oriented to unstructured outdoor environments, which could include flying oriented robots, space-oriented robots and underwater robots. The most common motion mechanism for surface mobile robots is the wheel-based mechanism, adapted both to flat surfaces, found in human-made environments, and to rough terrain, found in outdoor environments. However, some researchers have reported successful developments with leg-based mobile robots capable of climbing up stairs, although they require further investigation. The research work presented here focuses on wheel-based mobile robots that navigate in human-made indoor environments. Two main problems are described throughout this book: Firstly, the representation and integration of uncertain geometric information by means of the Symmetries and Perturbations Model (SPmodel). This model combines the use of probability theory to represent the imprecision in the location of a geometric element, and the theory of symmetries to represent the partiality due to characteristics of each type of geometric element. The second major problem is the first location problem , that is, the computation of an estimation for the mobile robot location when the vehicle is completely lost in the environment. The problem is formulated as a search in an interpretation tree using efficient matching algorithms and geometric constraints to reduce the size of the solution space. The book proposes a new probabilistic framework adapted to the problem of simultaneous localization and map building for mobile robots: the Symmetries and Perturbations Map (SPmap). This framework has been experimentally validated by a complete experiment which profited from ground-truth to accurately validate the precision and the appropriateness of the approach. The book emphasizes the generality of the solutions proposed to the different problems and their independence with respect to the exteroceptive sensors mounted on the mobile robot. Theoretical results are complemented by real experiments, where the use of multisensor-based approaches is highlighted.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer
Country
NL
Date
31 March 2000
Pages
205
ISBN
9780792377894

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

During the 1990s, many researchers dedicated their efforts to constructing revolutionary machines and to providing them with forms of artificial intelligence to perform some of the most hazardous, risky or monotonous tasks historically assigned to human beings. Among those machines, mobile robots are undoubtedly at the cutting edge of research directions. A rough classification of mobile robots can be considered: on the one hand, mobile robots oriented to human-made indoor environments; on the other hand, mobile robots oriented to unstructured outdoor environments, which could include flying oriented robots, space-oriented robots and underwater robots. The most common motion mechanism for surface mobile robots is the wheel-based mechanism, adapted both to flat surfaces, found in human-made environments, and to rough terrain, found in outdoor environments. However, some researchers have reported successful developments with leg-based mobile robots capable of climbing up stairs, although they require further investigation. The research work presented here focuses on wheel-based mobile robots that navigate in human-made indoor environments. Two main problems are described throughout this book: Firstly, the representation and integration of uncertain geometric information by means of the Symmetries and Perturbations Model (SPmodel). This model combines the use of probability theory to represent the imprecision in the location of a geometric element, and the theory of symmetries to represent the partiality due to characteristics of each type of geometric element. The second major problem is the first location problem , that is, the computation of an estimation for the mobile robot location when the vehicle is completely lost in the environment. The problem is formulated as a search in an interpretation tree using efficient matching algorithms and geometric constraints to reduce the size of the solution space. The book proposes a new probabilistic framework adapted to the problem of simultaneous localization and map building for mobile robots: the Symmetries and Perturbations Map (SPmap). This framework has been experimentally validated by a complete experiment which profited from ground-truth to accurately validate the precision and the appropriateness of the approach. The book emphasizes the generality of the solutions proposed to the different problems and their independence with respect to the exteroceptive sensors mounted on the mobile robot. Theoretical results are complemented by real experiments, where the use of multisensor-based approaches is highlighted.

Read More
Format
Hardback
Publisher
Springer
Country
NL
Date
31 March 2000
Pages
205
ISBN
9780792377894