Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
These are the proceedings of Eighth European Conference on the Spectroscopy of Biological Molecules, covering: proteins and peptides; chromophores and chromophoric proteins; nucleic acids; carbohydrates; lipids and biomembranes; biocomplex systems; and analytical and biomedical applications. Investigation of the structure and function of biological molecules through spectroscopic methods is a field requiring clever techniques and demanding experiments. The basic concepts are being applied to more and more complex systems, making feasible the study of the behaviour of whole systems in relation to molecular disturbances. The analytical potential of spectroscopy and spectroscopic imaging enables species identification of bacteria and tissue recognition. Clear opportunities for in vivo applications become apparent in the medical field. The methods developed in biophysics start to generate spin-off in the direction of biotechnology, where in previous years this has happened for biochemical techniques. New directions are manifest. Tools are being developed to investigate the behaviour of single molecules in interaction with their environment. Individual interactions can now be investigated and individual molecules in complexes can be visualized. Processes that were previously unobservable as a result of ensemble averaging can now be investigated on a single molecule level.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
These are the proceedings of Eighth European Conference on the Spectroscopy of Biological Molecules, covering: proteins and peptides; chromophores and chromophoric proteins; nucleic acids; carbohydrates; lipids and biomembranes; biocomplex systems; and analytical and biomedical applications. Investigation of the structure and function of biological molecules through spectroscopic methods is a field requiring clever techniques and demanding experiments. The basic concepts are being applied to more and more complex systems, making feasible the study of the behaviour of whole systems in relation to molecular disturbances. The analytical potential of spectroscopy and spectroscopic imaging enables species identification of bacteria and tissue recognition. Clear opportunities for in vivo applications become apparent in the medical field. The methods developed in biophysics start to generate spin-off in the direction of biotechnology, where in previous years this has happened for biochemical techniques. New directions are manifest. Tools are being developed to investigate the behaviour of single molecules in interaction with their environment. Individual interactions can now be investigated and individual molecules in complexes can be visualized. Processes that were previously unobservable as a result of ensemble averaging can now be investigated on a single molecule level.