Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This monograph provides a unified theory of maps and their enumerations. The crucial idea is to suitably decompose the given set of maps for extracting a functional equation, in order to have advantages for solving or transforming it into those that can be employed to derive as simple a formula as possible. It is shown that the foundation of the theory is for rooted planar maps, since other kinds of maps including nonrooted (or symmetrical) ones and those on general surfaces have been found to have relationships with particular types in planar cases. A number of functional equations and close formulae are discovered in an exact or asymptotic manner.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This monograph provides a unified theory of maps and their enumerations. The crucial idea is to suitably decompose the given set of maps for extracting a functional equation, in order to have advantages for solving or transforming it into those that can be employed to derive as simple a formula as possible. It is shown that the foundation of the theory is for rooted planar maps, since other kinds of maps including nonrooted (or symmetrical) ones and those on general surfaces have been found to have relationships with particular types in planar cases. A number of functional equations and close formulae are discovered in an exact or asymptotic manner.