Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics: Generalized Solitons and Hyperasymptotic Perturbation Theory
Hardback

Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics: Generalized Solitons and Hyperasymptotic Perturbation Theory

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The aim of this text is to present a thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves which radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances. Specific examples are provided in the areas of water waves, particle physics, meteorology, oceanography, fiber optics pulses and dynamical systems theory. For many species of nonlocal solitary waves the radiation is exponentially small in 1/E where E is a perturbation parameter, thus lying beyond-all-orders . A second theme is the description of hyperasymptotic perturbation theory and other extensions of standard perturbation methods. These methods have been developed for the computation of exponentially small corrections to asymptotic series. A third theme involves the use of Chebyshev and Fourier numerical methods to compute solitary waves. Special emphasis is given to steadily-translating coherent structures, a difficult numerical problem. A fourth theme is the description of a large number of non-soliton problems in quantum physics, hydrodynamics, instability theory and others where beyond-all-order corrections arise and where the perturbative and numerical methods described earlier are essential. Later chapters provide a thorough examination of matched asymptotic expansions in the complex plane, the small denominator problem in Poincare-Linstead ( Stokes ) expansions, multiple scale expansions in powers of the hyperbolic secant and tangent functions and hyperasymptotic perturbation theory.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer
Country
NL
Date
31 May 1998
Pages
596
ISBN
9780792350729

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The aim of this text is to present a thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves which radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances. Specific examples are provided in the areas of water waves, particle physics, meteorology, oceanography, fiber optics pulses and dynamical systems theory. For many species of nonlocal solitary waves the radiation is exponentially small in 1/E where E is a perturbation parameter, thus lying beyond-all-orders . A second theme is the description of hyperasymptotic perturbation theory and other extensions of standard perturbation methods. These methods have been developed for the computation of exponentially small corrections to asymptotic series. A third theme involves the use of Chebyshev and Fourier numerical methods to compute solitary waves. Special emphasis is given to steadily-translating coherent structures, a difficult numerical problem. A fourth theme is the description of a large number of non-soliton problems in quantum physics, hydrodynamics, instability theory and others where beyond-all-order corrections arise and where the perturbative and numerical methods described earlier are essential. Later chapters provide a thorough examination of matched asymptotic expansions in the complex plane, the small denominator problem in Poincare-Linstead ( Stokes ) expansions, multiple scale expansions in powers of the hyperbolic secant and tangent functions and hyperasymptotic perturbation theory.

Read More
Format
Hardback
Publisher
Springer
Country
NL
Date
31 May 1998
Pages
596
ISBN
9780792350729