Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Quantum entanglement (QE) is one of the most, if not the most, mysterious, and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fiber communications, in addition to teleportation and quantum computing, QE goes beyond fascination and into the pragmatic spheres of commerce and the military.
With the growing population of engineers in need of a transparent, pragmatic, and direct introduction to QE and its applications, this book, the first of its kind, focuses on the practical mathematical tools necessary to handle QE and its requirements to design optical configurations for QE-based systems. Specific applications include satellite networks, space-to-space communications, quantum teleportation, and quantum computing.
Key Features
The first and only available text on engineering for quantum entanglement.
Presents an introduction to the topic and explains the very basic physics concepts.
Provides a tour of the relevant mathematics essential to handle quantum
entanglement.
Provides content to design optical configurations for optical entanglement-based
systems in quantum communications and quantum computing.
Includes discussions of key practical applications such as space-to-space, fiber and satellite communications.
Presents the fascinating subject of quantum interpretations as elucidated by
quantum entanglement.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Quantum entanglement (QE) is one of the most, if not the most, mysterious, and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fiber communications, in addition to teleportation and quantum computing, QE goes beyond fascination and into the pragmatic spheres of commerce and the military.
With the growing population of engineers in need of a transparent, pragmatic, and direct introduction to QE and its applications, this book, the first of its kind, focuses on the practical mathematical tools necessary to handle QE and its requirements to design optical configurations for QE-based systems. Specific applications include satellite networks, space-to-space communications, quantum teleportation, and quantum computing.
Key Features
The first and only available text on engineering for quantum entanglement.
Presents an introduction to the topic and explains the very basic physics concepts.
Provides a tour of the relevant mathematics essential to handle quantum
entanglement.
Provides content to design optical configurations for optical entanglement-based
systems in quantum communications and quantum computing.
Includes discussions of key practical applications such as space-to-space, fiber and satellite communications.
Presents the fascinating subject of quantum interpretations as elucidated by
quantum entanglement.