Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The behaviour of systems occurring in real life is often modelled by partial differential equations. This book investigates how a user or observer can influence the behaviour of such systems mathematically and computationally. A thorough mathematical analysis of controllability problems is combined with a detailed investigation of methods used to solve them numerically, these methods being validated by the results of numerical experiments. In Part I of the book the authors discuss the mathematics and numerics relating to the controllability of systems modelled by linear and non-linear diffusion equations; Part II is dedicated to the controllability of vibrating systems, typical ones being those modelled by linear wave equations; finally, Part III covers flow control for systems governed by the Navier-Stokes equations modelling incompressible viscous flow. The book is accessible to graduate students in applied and computational mathematics, engineering and physics; it will also be of use to more advanced practitioners.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The behaviour of systems occurring in real life is often modelled by partial differential equations. This book investigates how a user or observer can influence the behaviour of such systems mathematically and computationally. A thorough mathematical analysis of controllability problems is combined with a detailed investigation of methods used to solve them numerically, these methods being validated by the results of numerical experiments. In Part I of the book the authors discuss the mathematics and numerics relating to the controllability of systems modelled by linear and non-linear diffusion equations; Part II is dedicated to the controllability of vibrating systems, typical ones being those modelled by linear wave equations; finally, Part III covers flow control for systems governed by the Navier-Stokes equations modelling incompressible viscous flow. The book is accessible to graduate students in applied and computational mathematics, engineering and physics; it will also be of use to more advanced practitioners.