Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica (R) Support
Hardback

Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica ® Support

$219.99
Sign in or become a Readings Member to add this title to your wishlist.

Increasingly, researchers in many branches of science are coming into contact with Bayesian statistics or Bayesian probability theory. By encompassing both inductive and deductive logic, Bayesian analysis can improve model parameter estimates by many orders of magnitude. It provides a simple and unified approach to all data analysis problems, allowing the experimenter to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. This book provides a clear exposition of the underlying concepts with large numbers of worked examples and problem sets. The book also discusses numerical techniques for implementing the Bayesian calculations, including an introduction to Markov Chain Monte-Carlo integration and linear and nonlinear least-squares analysis seen from a Bayesian perspective. In addition, background material is provided in appendices and supporting Mathematica notebooks are available, providing an easy learning route for upper-undergraduates, graduate students, or any serious researcher in physical sciences or engineering.

In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
14 April 2005
Pages
488
ISBN
9780521841504

Increasingly, researchers in many branches of science are coming into contact with Bayesian statistics or Bayesian probability theory. By encompassing both inductive and deductive logic, Bayesian analysis can improve model parameter estimates by many orders of magnitude. It provides a simple and unified approach to all data analysis problems, allowing the experimenter to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. This book provides a clear exposition of the underlying concepts with large numbers of worked examples and problem sets. The book also discusses numerical techniques for implementing the Bayesian calculations, including an introduction to Markov Chain Monte-Carlo integration and linear and nonlinear least-squares analysis seen from a Bayesian perspective. In addition, background material is provided in appendices and supporting Mathematica notebooks are available, providing an easy learning route for upper-undergraduates, graduate students, or any serious researcher in physical sciences or engineering.

Format
Hardback
Publisher
Cambridge University Press
Country
United Kingdom
Date
14 April 2005
Pages
488
ISBN
9780521841504